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Abstract- -Piezoelectric ceramics contain anomalies which give rise to localized stress concentrations
when electric fields are applied. These stress concentrations cause microcracking which leads to
electro-mechanical degradation and eventually to material failure. In this paper, a unit cell approach
is presented to understand the relationship between material properties and electric field induced
stress concentrations around a specific anomaly, i.e., circular void. An exact electro-elastic analysis
verified with a finite element model is used to study the stress and electric field concentrations as a
function of material properties. Parametric studies indicate that the electric field induced stress
concentrations in the material are effectively eliminated for certain values of the piezoelectric
coefficients. While a trivial solution to this problem is that the piezoelectric coefficients are zero,
other "optimum" coefficients exist. These coefficients do not limit the deformation profile of the
piezoelectric and are thermodynamically admissible. Results presented for PZT-4 and PZT-5H
support the contention that optimal piezoelectric materials can be manufactured. «() 1997 Elsevier
Science Ltd.

1. INTRODUCTION

Among active materials, piezoelectric ceramics (e.g., PZT) are considered to be one of the
best actuator materials available. This is partially due to the large actuation forces, large
cycle time response, and the relative maturity of research related activities. In fact PZT is
currently being used in a number of practical applications such as active optical positioning
systems or solid state motors. However, to be implemented in some of the more demanding
actuator applications (e.g., active control flap for rotorcraft) these materials must be
operated with large electric fields which cause the material to degrade during ferroelectric
cycling. The mechanisms which contribute to this degradation process as well as the means
to mitigate it need to be more thoroughly investigated.

To analytically understand the degradation process during electric field cycling,
researchers focused on fracture toughness. The low fracture toughness of these materials is
partially attributable to defects which inevitably form during the sintering process. To
evaluate the magnitude of the electric field induced stresses, researchers analytically studied
crack geometries as a worst case scenario. However, Parton (1988) reported that the stress
fields decouple with electric fields along the self similar plane of the crack. That is, in the
plane of the crack electric fields do not induce stress concentrations implying that stress
intensity factors commonly used as a fatigue indicator are independent of electric field
strength. The total potential energy release rate was proposed by Pak (1990) and later by
Suo (1992) as a fracture criteria but the electric fields theoretically retarded crack propa­
gation. These analytical findings which suggest that cracks do not grow in the presence of
an electric field are contradicted by experimental evidence (Tobin and Pak (1994)). Dunn
(1994) suggested that at least for the slit like crack, the flux boundary conditions along the
crack face may influence results and be responsible for reported discrepancies. More recently
Park and Sun (I 995a, b) proposed the mechanical strain energy release rate as a means to
predict the influence of electric fields on crack propagation.

Experimental observations demonstrate that electric fatigue degrades the properties of
piezoelectric ceramics (McQuarrie, 1953). Carl (1975) found that micro-cracks form and
grow along grain boundaries during fatigue and attributed them to internal stresses. Jiang
(1993) reported that electric fatigue is related to the porosity of the ceramic. Pan (1992)
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reported that fatigue mechanisms are related to domain pinning issues. Jiang (1994) found
that electrode preparation techniques influence electric fatigue behavior. Recently Wang et
al. (1996) reported that fatigue degradation is caused by stress concentrations around
internal anomalies such as voids. While there have been a number of experimental studies
on fatigue, these investigations offer different explanations for the fatigue mechanisms
with relatively few concentrating on local mechanical stress concentrations. In regards to
mechanical loading of piezoceramics, we reference the work of Krueger (1961), Takahashi
(1990), and Tanimoto (1991). All of these studies indicate that if the mechanical loads are
below the depolarizing stress limit the material does not mechanically degrade. Therefore,
mechanical degradation does not appear to be a major concern. In all of these tests whether
mechanical or electrical, the influence of the material properties on the fatigue behavior
has not been addressed and may offer an explanation to the conflicting data available.

From this brief review, experimental results indicate that piezoelectric materials fatigue
in the presence of large electric fields due to the formation of internal damage. Analytical
models to describe this behavior are predominantly based on fracture mechanics
approaches. In this paper, stress concentrations which arise around cylindrical shaped voids
are the principal focus. Unlike the crack, electric fields induce stress concentrations around
the symmetric loading plane of a circular hole providing a physical mechanism to induce
damage and degrade the material during ferroelectric fatigue. Parametric studies indicate
that optimal material properties exist to eliminate the stress states generated by this anomaly
which suggests a methodology to alleviate damage progression. While a trivial solution to
this condition is that the piezoelectric coefficients are zero, additional optimal properties
exist which do not limit the deformation of the material.

2. ANALYTICAL MODELING

Voids or defects present in piezoelectric ceramics may be thought of as randomly
distributed spherical shaped cavities (see Fig. la). These defects can be analytically modeled
as two dimensional hole-like defects (see Fig. lb) for simplicity. If interaction effects are
second order, the problem can be reduced to a single defect as a first order approximation
(see Fig. lc), an approach similar to the analysis of composite materials (Hashin and
Rosen, 1964). Physical evidence supporting this modeling approach for a piezoelectric
ceramic subjected to ferroelectric fatigue is provided by Wang et al. (1996). In Fig. 2a
a photograph of a piezoelectric specimen containing a two-dimensional circular defect
comparable to the analytical model is presented. During ferroelectric cycling, cracks initiate
and grow from the rim of the hole indicating that electric field induced stresses are a primary
driving force during fatigue. In Fig. 2b a photograph of a three dimensional micro-void is
presented. Similar to the two-dimensional macro-void (Fig. 2a), a crack initiates/grows
from the rim of the three-dimensional structure during ferroelectric fatigue. Therefore, the
two dimensional unit cell model (Fig. Ic) is thought to be an acceptable approach to
begin understanding the relationship between material properties and damage evolution in
piezoceramics at the micro-level.
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Fig.!. Modeling of defects, (a) 3-D defects, (b) 2-D defects, (c) unit cell 2-D defect.
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Fig. 2. Photograph of damage propagation around a simulated two-dimensional macro-void (a)
and an actual three-dimensional micro-void (b).
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Table I. Material properties ofPZT-4 piezoelectric ceramics (Jaffe et al., 1965)
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e-form

CII = 14.02 X 10 III (N/m')
Cl2 = 7.89 X 1Ol<)

C" = 7.57 X 10 '0

C" = 11.58 X 10 10

C44 = 2.53 x 10 '0

eJi = - 5.27 (Cjm2
)

e" = 15.45
e 15 = 13.00

8" = 6.37 x 10 9 (CjVm)
833 = 5.52 X 10- 9

g-form

s" = 10.90 X 10- 12 (m2/N)
SI2 = -5.42x 10- 12

SI1 = -2.IOx 10- 12

s,; = 7.90 x 10- 12

S~~ = 20.88 X 10- 12

g31 = -1.11 X 10- 2 (m'/C)
e33 = 2.61 x 10- 2

el5 = 3.94 x 10- 2

P,I = 8.29 X 10' (Vm/C)
P3J = 8.69 X 10'

2-D g-form

a" = 8.20 x 10- 12 (m2/N)
al2 = -3.14 x 10- 12

a22 = 7.50 x 10- 12

a" = 20.88 x 10- 12

b21 = -1.66 X 10-2 (m'/C)
h" = 2.40 X 10- 2

b;; = 3.94 x 10- 2

6" = 8.29 X 10' (Vm/C)
6" = 9.82x 10'

Following Lekhnitskii's (1981) complex potential formulation for anisotropic plates,
Sosa (1991) obtained a closed form solution for the problem of a cylindrical cavity embed­
ded in a piezoelectric material. In this section, we briefly summarize the approach and
results from the closed form solution. Following this presentation, a finite element model
is described for comparison purposes and to validate the exact analytical solution. For this
study we use the material properties listed in Table 1 for PZT-4.

2.1. Analytic solution
Consider a piezoelectric medium containing a circular hole. Based on linear piezo­

electricity, the constitutive relations can be written as

(1)

where S3k' is the compliance tensor measured at constant electric displacement, gkij is the
piezoelectric stress tensor, and f3ij is the dielectric impermeability tensor measured at con­
stant stress. Although there are several different types of expression for the constitutive
relations, the expression in eqn (1), called g-form, which has stresses, (Jkh and electric
displacements, Db as independent variables was chosen to facilitate the development of
complex stress potentials. The relation between material coefficients for other forms of
constitutive relations can be easily derived by changing independent variables.

Equilibrium equations are written as

(Jij,i = 0, Du = 0. (2)

Generally, the X3 axis represents the poling direction of the material in axes, x I - X2 - X3'

Most piezoelectric ceramics have a tetragonal structure and are transversely isotropic with
the X 3 axis normal to the isotropic plane. For our problem, the X 1-X3 plane is the working
plane and it will be denoted as the x-y plane. By reducing the problem to 2-D plane strain
case, the following conditions are imposed.

(3)

Using the conditions imposed by eqn (3) in eqn (1), the constitutive relations can be reduced
to two-dimensions in the following matrix form.
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rl[a" a l2

oJrnl [0 ~~:] {~:}Svv - al2 a 22 o aye + 0

Sxy 0 0 a33 axy b l ]

{~J = -[b~l
0 h'Jnj ["" b~J {~Jb22

laCY +o ~ 0
axy

(4)

(5)

The constants of a'i' b,l, and bij are listed in Table I. To solve the problem using a complex
potential approach the compatibility equations are required.

iyl Su 02 SF' iyl Sn
--?- + --7- -2-;:)-- = 0,oy- o.r ex oy

oE oEF-' - --- =0
oy ox . (6)

Str~ss functions and electric displacement functions which satisfy field equations, eqns
(2)-(6), can be defined as

(Jxy =
02U

ex oy'
olj;

D x = -::;-,
oy

olj;
and D = ---) ox (7)

where U and if; are functions of a complex variable, z, defined as z = x+ !iY. Applying
stress and electric displacement functions, eqn (7), to compatibility equations, eqn (6), a
characteristic equation can be obtained. Once the roots of the characteristic equation,
!ik = 'Y.k + if3k> are known, the solution can be expressed as

]

U(x, y) = 2 Re I Uk(zd
k~l

(8)

where Zk = X+ !ikY' From either one of the two compatibility equations, the relation between
U and lj; can be obtained as follows.

where

Ak = _ (b 21 +b 13 )!i; +b22 .

b11!i; +b22

Hence, the solution for the electric displacement function can be written

3

lj;(x,y) = 2Re I lj;k(Zk) = 2Re I AkU;Jzd·
k~1 k~1

(9)

(10)

(II)

To reduce the order of the derivative, we introduce a complex variable ({Jk as ({Jk(Zk) = U~.

The stresses and electric displacements can then be expressed as a function of ({Jk.

3

a'a = 2 Re I !i;({J~(Zk)'
k~l

3

ayy = 2 Re I ((J~(Zk)'
k~1

3

an = -2Re I !ik({J~(Zk)
k~1

3

D, = 2 Re I )'kllk({J~(Zk)'
k~1

3

D v = -2 Re I Ak({J~(zd·
k~l

(12)
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Now the problem is reduced to determining a complex function cp satisfying boundary
conditions. Two types of boundary conditions are applied. One is the remote mechanical
and electrical loading, and the other is the hole boundary conditions. As was shown in Fig.
1, the hole has radius a. Far field remote loadings can be denoted as

a';~ = 0, <J':; = 0, a~ = 0, D~ = 0, and D,Y) = Do at z = ex;. (13)

The rim of the hole is traction free and to a first order approximation it can be argued
that the hole is electrically insulated. The validation of the latter boundary condition is
justified by the fact that the dielectric permittivity of piezoelectric ceramics is three orders
of magnitude larger than air or vacuum. Here, boundary condition along the rim of hole,
r, can be written as

t, = 0 and D,n, = 0 on r (14)

where t, is the traction vector and n, is the unit normal vector to the circular hole of
contour r.

Applying the hole boundary conditions (eqn (14)) and the far-field boundary con­
ditions (eqn (13)) the complex potential function can be obtained as

(15)

where

and

where Bk and Bt are real constants determined by the boundary conditions (eqn (13)).
Substituting eqn (15) into eqn (12), full field solutions such as stresses and electric dis­
placements can be obtained.

2.2. Finite element analysis
In addition to the analytical model, a finite element analysis (FEA) was performed to

check the validity of the analytic solution. Commercially available FEA packages such as
ANSYS and ABAQUS, as well as an in-house code were used for comparison purposes.
All three codes yielded displacements and potential values differing by less than 2%. In
Fig. 3 we present an illustration of the finite element model used in this study. Considering
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r

Fig. 3. Finite element model of a piezoelectric plate with a circular hole defect.
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symmetry, one quarter of the plate was analyzed. Results presented in this manuscript
correspond to a radius to width ratio, a/w of 0.1 to simulate an infinite plate with a hole.
For mechanical problems, if the a/w ratio is less than 0.25 the error in calculating hoop
stresses is less than 6% (Timoshenko, 1934). The size of the elements near the hole was
!J..a/a = 0.01 and !J..8 = 4.5 degrees (see Fig. 3b). Mesh refinement to !J..a/a = 0.005 with 40
elements along the hoop direction were conducted without appreciable changes in the
primary variables.

Four noded piezoelectric quadratic plane strain elements were used with each node
having three degrees of freedom (DOF), i.e., two displacements, u and u, and an electric
potential, ¢. Mechanical boundary conditions are imposed along lines AB and ED with x
displacements constrained and y displacements constrained, respectively. For the electric
boundary conditions, electric potentials were imposed along the lines Be and ED. Since
the electric boundary conditions in the analytic model are electric displacement Do (eqn
(14)) and not electric potential as in the finite element model, an equivalence principal was
used. This was calculated with the constitutive equations, eqn (1), which related the far­
field electric field to the far-field electric displacement for an equivalent medium.

In developing the finite element analysis, the constitutive relations presented in eqns
(16-17) were used. That is, strains and electric fields were used as the free variables, i.e., e­
form, as opposed to electric displacements and stresses (compare to eqn (1)). Results
presented in this paper are also described in the context ofe-form due to its wider acceptance.
The material constants used in an of the analysis are representative of PZT-4 listed in Table
1.

!
(Jxxj [Cll
(Jyy = Cl3
(Jxy 0 o

(16)

(17)

3. RESULTS

The electric flux is applied in the negative y-direction for all cases studied in this paper.
The far field electric field is defined by - Eo and unless otherwise specified the results pertain
to the analytical solution presented in Section 2.1. In Fig. 4, we compare numerical results
obtained from the analytical solution to that of the finite element model for PZT-4. The
normalized hoop stress along the rim of the hole is plotted as a function of azimuth angle.
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Fig. 4. Schematic of deformation with the electric field - Fa in y direction.
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~:...I-_---~- ~- -Fig. 5. Physical explanation of electric field induced stresses in the piezoceramic due to a - E,.

The hoop stress in the figure is normalized to the far field electric field value (- Eo).
Comparison between the two models indicates reasonable agreement indicating that both
solutions are valid. Differences between the models can be attributed to both mesh size and
evaluation of the hoop stresses at particular points. For the analytical solution the hoop
stresses are calculated along the rim of the hole while for the FEA analysis they are
calculated at the Gauss points for the element. For either model the hoop stress is com­
pressive at both e= 0° and 90° while tensile at e= 45°. A physical explanation based on
an electric field directed in the y-direction (Ev) suggests that these stresses should be tensile
(see Fig. 5) and not compressive. That is, an element at the rim of the hole at e= 0° will
experience a relatively larger contraction than a similar element in the far field at e= 0
resulting in a tensile hoop stress. Also at e= 90°, the electric field vanishes in the y-direction
due to the imposed flux condition (eqn (15)) suggesting that this element should also be in
tension. Therefore, an explanation based solely on Ey is insufficient to explain the com­
pressive stress concentrations present in PZT-4.

To investigate other mechanisms generating stress concentrations within the material,
the normalized electric field variations (both x and y) around the rim of the hole are
presented in Fig. 6. The normalized y-directed electric field strength Ey!Eo increases by a
factor of 2 at e= 0" while at 90c it nearly vanishes as expected. The Ey is associated with the
longitudinal piezoelectric coefficients (e31 and e33) causing the physical deformations/stresses
depicted in Fig. 5 and discussed in the previous paragraph. Figure 6 also indicates the
presence of a x-directed electric field (Ex) around the rim of the hole and at certain locations
is comparable in magnitude to the Ev• The E, generates additional stresses which are

1.5

Cl
0.5

~ 0kl
~

~.--
Ex/Eo

Cl -0.5 __ -- Ey/Eo
E::!
~>o: -1

-1.5

-2
o 10 20 30 40 50 60 70 80 90

Angle (degree)
Fig. 6. Electric field distribution normalized to far-field value around the hole r/a = 1.0.
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associated with the piezoelectric shear coefficient (i.e., (15) and was not previously
considered. To quantitatively evaluate the stress fields generated by E, and E\. an analytical
study of two hypothetical piezoelectric materials is presented. The first material has a
piezoelectric shear coefficient CI5 equal to zero and all other reflective of PZT-4. For this
material, the E, does not induce any stresses/strains while E,. does. For the second material,
the piezoelectric longitudinal stress coefficients e31 and ('33 are identically zero while CI5 is
representative ofPZT-4. For this material only E, induces stresses/strains into the specimen.
By evaluating these two cases, the contribution of E, or E, fields to the hoop stress can be
determined by modulating e15 or C31 and C33'

In Fig. 7, the normalized hoop stress is plotted as a function of azimuth angle at
ria = I for the two hypothetical materials. An E, electric field (related to shear coefficient
term (CI5)) generates stresses opposite in sign to the E, (related to longitudinal coefficient
terms (e31 and e33))' For the hypothetical material with the shear coefficient. compressive
hoop stresses are generated at both e= 0° and 90'" while for the other material tensile
hoop stresses are generated at these locations. While these two effects cannot be simply
superimposed for determining absolute magnitudes due to coupling in the partial differential
equations (i.e., plug eqns (16) and (17) into eqn (2)). this analysis provides an indication of
their influence on stress distributions. Specifically, for PZT-4 the presence of compressive
stresses at either e= 0" or 90' is attributed to the relative magnitude of the piezoelectric
shear coefficients when compared to the piezoelectric longitudinal coefficients. While this
study provides both a physical and a mathematical explanation for the compressive hoop
stresses generated in PZT-4, the results presented in Fig. 7 have a significantly more
important meaning. They suggest that by appropriately choosing the material properties
(eI5' e3h and (33) the hoop stress around the rim of the hole can be reduced/eliminated.

To elaborate upon this concept, Fig. 8 displays the results of a parametric study
demonstrating that the hoop stress can be reduced. This study includes coupling in the
partial differential equations and therefore is an accurate depiction, unlike Fig. 7 which was
presented only for clarification of a physical idea. The normalized hoop stress distribution is
plotted as function of eat the hole's rim for different e15' In the study only CIS was varied
while all other material constants were fixed. As e l5 decreases in absolute magnitude from
the original value, e15 = 13.0 C/m2

, the hoop stress begins to decrease in magnitude. At a
value of e l5 = 11.0 C/m2

, the hoop stress around the rim is almost entirely eliminated.
Further decreases in e15 cause the hoop stress to reverse suggesting that the longitudinal
piezoelectric coefficients have become sufficiently large to dominate the problem. For all
materials studied in this graph, nodal points indicating an absence of stress arise at 22' and
68° and local minimums/maximums occur at 0",45°, and 90'. The presence of these fixed

12
10 --.-- e15=0

__ e33=e31 =0
8 ~"_. __ PZT-4 /
6 \ ,
4\ ~~ II

... • "'!
21- \\./ .i
o i-"~!"----.-. --11:----.
~~ ~.. . i.\,
-6 _.\ f --
-8 '~~

-10 I I I I

o 10 20 30 40 50 60 70 80 90

Angle (degree)
Fig. 7. Hoop stress distribution at ria = 1.0 for hypothetical materials.
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Fig. 8. Hoop stress distribution at ria = 1.0 for different values of C'S,

points strongly suggests that the hoop stress can be entirely eliminated with an appropriate
choice of the shear coefficient.

Similar parametric studies using e31 and e 33 are presented in Figs 9 and 10, respectively.
While e15 is an independent material parameter, some experimental results have indicated
that a relationship exists between e31 and e33 based on a constant volume argument (Jaffe,
1971). While this suggests that these two parameters cannot be independently varied, the
proposed parameters presented in Figs 8-10 represent reasonable variations of the
constants. In Fig. 9, the value of e31 is varied from - 5.3 to - 14 C/m2 with results similar
to those presented in Fig. 8 for e15' However, for a value of e31 = - 9.6 C/m2 the entire
hoop stress around the rim of the hole appears to be eliminated. This provides conclusive
evidence that the piezoelectric coefficients can be modified to control and eliminate the
hoop stresses around the rim of the hole. Furthermore, for this optimal case the deformation
of the piezoelectric medium is larger than for the original coefficients. Therefore, optimum
piezoelectric properties do not limit deformations. When reviewing Figs 9 and 10, nodal
points are present at 22' and 68' as well as maximum and minimums arising at 0 , 45', and
90". This indicates that the stress states vary in a specific fashion for all variations in the
piezoelectric coefficient implying that optimal coefficients can be calculated by demanding
that the hoop stress vanish at any non-zero location around the rim.
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Fig. 9. Hoop stress distribution at ria = 1.0 for different values of e,t.
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Fig. 10. Hoop stress distribution at ria = 1.0 for different values of eJ).

In Figs 8-10 parametric studies were presented to evaluate the variation in hoop stress
as a function of specific material properties. These results demonstrated that optimum
properties exist and could be calculated by eliminating the stress at any non-zero location.
To more accurately predict the optimal piezoelectric coefficients, Fig. 11 displays the
variation in hoop stress as a function of material properties. In this figure, each piezoelectric
coefficient is varied over a wide range of values while the other ones are held constant. Only
the hoop stress at e= 0 is presented in this figure with magnitudes at other locations along
the rim being qualitatively inferred from the results presented in Figs 8-10. That is, the
trend in the hoop stress variation remains fixed, such that nodal points occur at 22' and
68° and maximum/minimums at OC, 45c

, and 90°. As a result the values which cause the
hoop stress to vanish in Fig. 11 represent an optimal configuration for the piezoelectric
coefficients. The optimal values of C33, CIS, and C31 are 20.15, 10.75, and -9.63 (e/m2

),

respectively. Anyone of these values effectively eliminates the hoop stress around the rim
of the hole. These results are more accurate estimates than the values presented in Figs 8­
10. While this result demonstrates that hoop stresses around the rim are eliminated, the
entire stress state in the material is also essentially eliminated. Support for this statement is
provided by the fact that stresses arise because of stress generators. If there does not exist
any stress generators in the material it will be stress free. The fact that the far-field stresses
are identically zero (eqns (13)-(16)) and both the tractions and hoop stresses are essentially
zero around the rim of the hole indicates the absence of stress generators in the medium.
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e31 , e33 , e 15 (elm 2)
Fig. 11. Hoop stress at f) = 0 and ria = 1.0 with piezoelectric constants. ell' as parameters.
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Fig. 12. Hoop stress distribution at different radial positions for e31 = -9.6 Cjm2
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To verify this, Fig. 12 presents the variations in the normalized hoop stress at different
radial positions for e31 = -9.6 Cjm2• The results indicate that the hoop stress is essentially
eliminated everywhere in the material. While the e31 value chosen for this study is not the
exact optimum, the stresses are two orders of magnitude smaller than they are for PZT-4
(see Fig. 4). In Fig. 12, the largest hoop stress occurs along the rim of the hole (ria = 1)
and quickly decays as the radial position is increased. This exponential like decay contributes
to the discrepancies between the finite element calculated hoop stresses and the analytical
result reported in Fig. 4, that is the finite element stresses are calculated at Gauss points.

Figure 13 is provided to further support the contention that the entire stress state is
eliminated in the medium. The normalized hoop, radial, and shear stress variation at
ria = 1.1 is presented for PZT-4 with e31 = - 9.63 Cjm2. This value is closer to the optimum
value than the one used to generate Fig. 12. The hoop stress for this particular material is
four orders of magnitude smaller than the hoop stress for PZT-4 in Fig. 4 and two orders
of magnitude smaller than the hoop stress presented in Fig. 12. While the stresses are not
identically zero for e31 = -9.63 Cjm2 (i.e., 10-4

) for all practical purposes they are. The
fact that they are not zero indicates that additional terms must be kept to completely zero
out the stress state. These results clearly indicate that optimal properties predicted by the
present analysis eliminates the entire stress field in a piezoceramic containing a void.

In Fig. 14, the hoop stresses at the rim of a hole for two commercially available
materials is presented, i.e., PZT-5H and PZT-4. The material properties for PZT-5H are
published by Channel Industries a manufacturer of both material systems. For PZT-5H,

0.0003

I·~(~~0.0002

0.0001

0 a -.-+--w ,-- -0.0001b

'---0.0002 at r/a=l.1

-0.0003 ---.-- cr rr

-----+--- cree
-0.0004 ---.--- crre

-0.0005
a 10 20 30 40 50 60 70 80 90

Angle (degree)
Fig. 13. Hoop, radial, and shear stress distribution at ria = l.l for e31 = -9.63 Cjm'-
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Fig. 14. Comparison of hoop stress distribution at ria = 1.0 for PZT-4 and PZT-5H.

the stresses around the periphery of the hole are opposite in sign to the stresses for PZT-4.
Specifically, at () = OC and 90' the hoop stresses are tensile which is in sharp contrast to the
compressive stresses for PZT-4. This indicates that for PZT-5H the stresses are dominated
by the longitudinal piezoelectric coefficients and not the shear piezoelectric coefficient as
they are for PZT-4 (see Fig. 7 and related discussion). While opposite in sign, both
materials undergo stress reversal during bipolar electric cycling which could lead to fatigue
degradation. While neither of these materials represents an optimum, the fact that the
inherent stress fields are controlled by different piezoelectric coefficients indicates the plausi­
bility of developing a material with optimal properties predicted by the analysis presented
in this manuscript.

4. CONCLUSION

In this paper we discovered that the piezoelectric coefficients could be tailored to
eliminate the electric field induced stresses in a medium containing a circular defect. A
trivial solution to this problem is that the piezoelectric coefficients are all zero. However,
additional solutions exist and these other solutions permit large deformation of the pie­
zoceramic material. The stress concentrations around a circular hole were shown to be
attributable to either the shear or the normal piezoelectric coefficients. By choosing specific
values of these coefficients we demonstrated that the stress concentrations around the hole
and in the entire medium could be eliminated. This suggested that the fatigue life of these
materials could be increased through appropriate modification during the manufacturing
process. The proposed coefficients are thermodynamically admissible and do not limit the
deformation profile of the ceramic.
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